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ABSTRACT

Investigation of Failure Theory in Structures Made of Fiber —
Reinforced composite Materials
By
Iyad Mahmood Ali Muslih
Supervisor

Dr. Saad Habali

In this study, the micromechanical modeling of fiber-reinforced
composites is considered by using the strain energy approach. Failure of
structures made of fiber-reinforced composites is studied by using three
different failure theories: Tsai-Wu theory , Tsai-Hill theory, and
maximum stress theory .

Laminated composite structures made of composite materials
such as; boron-epoxy, glass-epoxy, and E glass-epoxy are considered.

The laminates are symmetric with different stacking sequences of
cross-ply and angle-ply.

Also, bending of plates and beams made of Eglass-epoxy under
different  loading and  supporting  conditions is  studied.
Results of this study are compared with available results in
literature, where the comparison shows that the predicted results are close

to the experimental results for materials and Jaminates considered in this

study .
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Chapter One

INTRODUCTION

1.1General

A composite material can be defined as a heterogencous
mixture of two or more homogeneous phases, which have been
bonded together mechanically. The resulting mixture has many
charactenistics, which are different from more conventional
engineering materials, so the advantage of composite material is that
it usually exhibits the best qualities of its constituents and often

some qualities that neither constituent possesses.

Composite materials can be commonly classified into three

different types :

1. Fibrous Composites which consist of fibers In a matrix, so the
result 1s a fibrous composite lamina where fibers are either
unidirectional or woven as shown in Fig.1-1, and work as the
main load-carrying agents with major characteristics of high
aspect ratios and high strength and stiffness to density ratios

while the matrix acts as a protecting agent and provides a mean to
distribute the load (Jones,1975).
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2. Laminated Composites which consist of layers of at least two
different materials that are bonded together, without any

possibility to slip, by means of a resin layer of zero thickness.

3. Particulate  Composites which consist of particles of one material

embedded into a matrix of another material,
Typical composite materials are shown in Fig. 1-2.

In this study, laminated fibrous composites will be considered,
where these composites involve both fibrous composites and
lamination techniques as shown in Fig. 1-3. A more common name
for these composites is laminated fiber-reinforced composites where
the fibers are infinitely long, parallel circular cylinders of identical
properties, and the materials of the fiber and matrix are homogenous,
1sotropic and linearly elastic. In this type of materials , layers of
fiber-reinforced material are built up with different fibers directions
to give different strengths and stiffnesses in the various directions.
Thus, the strengths and stiffnesses of the laminated fiber-reinforced
composite can be tailored to the specific design requirements. Also,

the properties of the structure that can be emphasized by this type of
composites are, low weight, corrosion resistance, wear resistance,

beauty or attractiveness, thermal insulation, etc. (Jones, 1975, Mal
and chatterjee, 1977 ).

Therefore, in most engineering applications, composite materials
are used in the from of laminates, where laminated beams and plates
are finding an Increasing use in the mechanical, acrospace, marine,

and other branches of engineering. Many applications of laminated

y of University of Jordan - Center of Thesis Deposit
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are based on the macromechanical behavior of the composite to
predict the failure surface under combined loading conditions. The
macromechanical behavior is the study of composite material
behavior wherein the material is presumed homogeneous and the
cffects of the constituent materials are detected only as averaged

apparent properties of the composite (Jones, 1975).

1.2 Objectives

The objectives of this study can be summarized as follows:

1-To study the effects of fiber orientation and loading on the

strength characteristics of fibrous composites.

2-To study the various failure criteria with application to

fiber-reinforced composite plates with different loading

conditions.

3-To compare the available results in literature with predicted

ones.

1.3 Methodology

In order to achieve the previous objectives the following steps

are followed :

[-A micromechanical modeling is investigated for

unidirectional fibrous composites and the strain energy

——AHRightsResarved - Library of University of Jordan - Center of Thesis Deposit



I-A  micromechanical modeling s investigated for

unidirectional fibrous composites and the strain energy

approach is used in programs.

2-Developing a strength analysis procedure for structures

made of fiber-reinforced composites.

3-Computer programs for different failure theories are

developed to study the first-ply failure for laminated

composites.

4-Failure of special cases of laminated composites is

investigated under different conditions.

5- As an application, bending of composite plates and beams

is investigated.

6-Results of different failure criteria are compared together

and with available results in literature.
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Chapter Two

MECHANICAL BEHAVIOR OF
COMPOSITE MATERIALS

2.1 Introduction

A lamina is the basic building block in a laminated fiber-
reinforced composite, so the knowledge of mechanical behavior of a

lamina is very important to understanding the behavior of the fiber-

reinforced structures.

Laminated composites have many characteristics that are
different from more conventional engineering materials, for they are
often both heterogeneous and nonisotropic (orthotropic, or more
generally, anisotropic); a heterogencous body has properties that are
a function of position in the body, and anisotropic body has material
properties that are different in all directions at a point in the body
while an orthotropic body has material properties that are different in
three mutually perpendicular directions at a point in the body, i. e the

properties are a function of orientation at a point in the body (Jones,
1975).
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The lamina constituents, the fibers and matrix, are
homogenous and isotropic and their stress- strain behavior is typified

as one of the classes depicted in Fig. 2-1.

For example, fiber-reinforced composites such as graphite-
epoxy and boron-epoxy are often treated as linear elastic materials

since fibers provide the majority of the strength and stiffness (Jones,
1975).

This variety of material properties will result in different
stress-strain relations inside the body affected by similar stresses;
when a normal stresses act on isotropic materials, the result will be
extension in the direction of the normal stresses and contraction in
the perpendicular direction, and the result of applying shear stresses
will be only shearing deformation. However, for orthotropic
materials, normal stresses in a principal material direction result in
extension in the direction of the applied stresses and contraction
perpendicular to the direction of applied stresses, but this contraction
can be either more or less than the contraction of a similarly loaded
1sotropic material with the same elastic modulus in the direction of
the load. For the case of shear stresses, shearing deformation will
result with a magnitude independent of the Young's moduli and

Poisson's ratios (Jones, 1975, Tsia and Hahn, 1980).
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2.2 Stress-Strain Relations for Orthotropic

Materials

From the knowledge of strength of materials (Marin, 1966),
both stress, 0y, and strain , €jj, are second order tensor quantities,
and they are equated by means of a fourth order tensor quantity, Ciy.
Thus, the generalized Hooke's law relating stresses to strains can be

written as;

Ufj = Cijki gu (21)

where ij,k and 1 assume values of 1,2 and 3 in commonly

defined Cartesian Coordinated System.

Both the stress and strain are symmetric (Whitney, 1987,

Jones, 1975), and therefore the following shorthand notation can be
used (Whitney, 1987).

(j-u2 O-I O.n:O-a__‘zln 6u= EI 28:|:£4=}/:1
.= 0, O0,=0.,=7, €&-=€&, 38,;8,:}/”
O.=0., 0,=0,=7, &=E& 216 -&-y

bl 2
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In addition, if a strain energy density function ,W, exists
(Jones, 1975),i.¢,

W:% oy & (2.2)
in such a way that

v — ¢

de, &, = O (2.3)

Then the independent components of Ci reduced from 81 to 21,
since Ciya = Chaijy OF it can be written C; = G (ij = L2, > 6).
Therefore, another form of the generalized Hooke's Law 1s ;
o.=C & i = Lo ,6 (2.4)
Now, for orthotropic elastic bodies , such as reinforced

composite materials, there are nine elasticity independent constants,

<o the stiffness matrix for orthotropic materials i (Jones, 1975):

e, Ca Go o 0 0]
Clz sz Cn 0 0 0
C. = Cy Cp Cn 0 0 0 2.5)
Y o 0 0 C, 0 O |
o 0 0 0 Cy O
o o 0 0 0 Cul




wi

2.3 Micromechanical Modeling Of Unidirectional

Fibrous Composites

2.3.1 Introduction

It is essential to study the micromechanical modeling of
unidirectional fibrous composites to find the equivalent elastic
properties of these materials. For micromechanical modeling, both

the materials of the fibers and the matrix are homogeneous and their

behavior is linearly elastic.

There are different methods to evaluate these properties. One
of them is the strain energy method that will be considered in this
study for its simplicity and accurate results (Al-Huniti, 1996). In the
strain energy method, a square cross section is used to approximate
the circular cross section of the fibers, also this method is based on
the assumption that for any section of the composite body, straight
lines remain straight after deformation. These two assumptions are
valid since the results of this method are very close to the results of

finite element methods and experimental works (Al-Huniti, 1996).

Strain energy method for a composite material states that total

strain energy is the sum of the strain energies of each material in the

composite.,

2
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E”z CllmVl +C11(2)V2 _VIVZ
— i)y _ ) v (2)
Ci,= C,z“)V] +CI2(2)V2 "'VtVz (Cu C|3 )(Cn ('23

Eu:

622 = sz(l)Vi +C22(2)V2 - Vle
623 =

633 =

Css=

m o))
(Cra —Cy
Cssm Vit C33(2)V

C}S(I) I/Z + CB(Z)I/I

e (2) M~ (1)
C|3 CH I/I-}-C‘}B C|3 VZ

(1) (2)
Cy V2+C33 4 '

() [e3Y
(Cu _CB

1 2
C33( ) V2 +C}3( )L/I

(1) (2) (1) 2)
Cyy 'Cyy "V +Cy, Cy Y,
Qa} {2}

Cyy V,+Cy W,

M~ ()
Cy Cy
Q) (2)
C33 V2+C33 VI

C (I)C (2)
44 H
C

M~ (2)
CSS C55

: Stiffnesses of bilayered material.

. Stiffnesses of material 1.

. Stiffnesses of material 2.

o @
Cis +C )
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»

respectively.
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FIG. 2-2 A Layered Model Consisting of Two Different Materials.
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2.3.2 Fibrous Case

Fibrous composites can be analyzed to find the stiffness matrix
by using a unit cell as shown in Fig.2-3 to represent the whole
composite body. The circular cross section of the fiber is
approximated by a square cross section which has the same area of
the circular cross section. The unit cell is devided to different

regions as shown in Fig.2-4a; regions I and 3 consist of matrix
material only whereas region 2 consists of two layers of material.
For region 2, Eq.(2.11) can be applied to find the properties C, .
Then the method considers region 2 as a one homogenous material
with properties C, in combination with regions 1 and 3 consisting of

the matrix material . And for this case, as shown in Fig.2-4a, the

equivalent properties are (Al-Huniti, 1996)

—I;I?Z (EI?. —Cn(z) i

EH: Ell Fl+ CH(Z);Z_ A1,
CaV,+C,, V)

F _ Elz +C22(2)F1 +Eu 612(2)’1/'2
= === =
CnV, +C32(2)V|

(EIZ - CnmIEza -C,Y
CnVi+ Can1

En: CuV +C|3sz —ﬁz

- h)
Cn Cu(-)
— __
CalV 2+ C,01)

P2 ny e Dyr
_ C:}Cnl )Vl +C 22(,3]l )V:
Y qr I
(::V2+(n‘ v,
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— (v _(‘ (2)
= oF 1 T
Cu= CuVy+ G, "V, =V Vb= =
CnV, +C22 I,

i

Ca C
“ == M(z)“
CuV,+C 7V,

Ess = Essfjr + Cﬁmi/_:

Cos C,™»

Cos = =— 03
Cc,c,Vg-'}-C“ V|

(2.12)

where ;
Cij Properties of the model in Fig. 2-4a.
Cij . Properties of compound region 2.

C,” o Properties of regions 1 and 3.

V\,V>:Volume fractions of region 2 and regions (1,3),

respectively.

The same principle can be used for the case shown in Fig. 2-
4b, and without going into details the final properties for
unidirectional fibrous composites are the average of the two cases in

Fig. 2-4a andFig. 2-4b , and can be written as (Al-Huniti, 1996).

y  — _ Eu*f-é
C’llf_ C33f_ 2 -

Cpy = Ca
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— -

— Cin+Cx

C:z,r: ("23/ 3
Gy, = C
e ; +zs
Cdd_{_ (’661_ %
Cﬁ]: Ess (213)

Where C, are the equivalent properties of the case in Fig. 2-4a.

Material properties for the laminate can be evaluated from the

components of the compliance matrix, S;, where

Cij = S;l (214)
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()]
»
]
<
|_
©
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3
©
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>
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>

For an orthotropic material , the compliance matrix, S;, can be

given in terms of engineering constants as in the following form
(Jones, 1975):




[
El EZ E3
Y _]__ Vs 0 0 0
El EZ Efi
R N
s=| 0 ok (2.15)
! 0 0 o L o o '
GZ3
1
0 0 0 0 — 0
G3l
0 0 o 0 o0 -
L GII_
where ;

E1, E2, E3: Young's moduli in 1,2 and 3 directions,

respectively.

U Poison's ratio for transverse strain in the j-direction

when stressed in the i-direction, that is

b, = - ‘o (2.16)

for o, = o and all other stresses are zero.

G»,G51,Gip: Shear moduli in the 2-3, 3-1 and 1-2 planes ,

respectively.

22

——AtRights Reserved - Library of University of Jordan - Center of Thesis Deposit



2.4  Stress-Strain Relations For Plane Stress State

In A Composite Lamina.

Most applications of laminated composites are in beams and
plates where theory of thin-plates is often considered, so plane stress

state will take place .

Generalized stress-strain relations for orthotropic material or a

composite lamina can be written , as given before , In the following

expanded form:

o, (Ci Co G, 0 0 07 g

g, C12 sz C23 0 0 0 )

o, _ G, G, C, 0 0 0 & (2 [ 7)
s 0 0 0 C, 0 0 ¥

T, 0 0 0 6 C, 0 i

T, | 0 0 0 0 0 Cy) | 712

Where now, C; is the stiffness properties for the composite

lamina in 1-2 plane as shown in Fig. 2-5.

For plane stress state, stresses in the direction perpendicular to
the 1-2 plane are zero, ie. 0, =1, =1, =0, therefore | stress-train

relations for plane stress state in a composite lamina are reduced to

the following form. (Jones, 1975, Tsai and Hahn, 1980 ).
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FIG. 2-3, Unidirectional Reinforced Lamina .
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12 g

a, o, Q, 0 &
g, :f:Qzl O, O &, (2]8)

4 0 0 O Y2y

where directions 1 and 2 are the principal material

directions, and k is the layer number in a multilayerd laminate, and

Qij are the reduced stiffnesses given by (Jones, 1975, Tsai and Hahn,
1980 ).

E
Qn = i :
— Uy,
0, = v, L, _ o
1-v,0,  1-u,0,
E,
O, = :
1-v,,0,,
0, = G, (2.19)

For a lamina shown in Fig. 2-6, the plane stress-strain relations

in the X - y plane can be written as (Jones, 1975);

o6 B 2
Oy |= .Q—Zl 622 a:@ SJ'J (2.20)

Tar Ou ac-z am Y
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F1G.2-6. Positive Rotation of Principal Material
Axes from the geometry X and y Axes
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where @, ,called the transformed reduced stiffnesses, are given

as (Jones, 1975 );
0, = Qu Cos* @ +2(Q3+2 Qgg)sin® 00 cos® @ +Qpsinl

0= Qi+ Qn-4Qg) sin*f cos? O + Qiy (sin* 8 +cos* 9 )

ézngll Sirl4 ) +2 ( Q|2+2Q66)sin2 8 COS2 g + sz COS4 é

0,6= (Q11-Q12-2Qg6) 5in 0 cos> 8 + (Q12-Q+2Q¢s) sin’8 cos O
é:e = (Q11-Quz- 2Qgs) sin’ @ cos @ +(Q,, - Q12 +2Qq) sin & cos’ @
04 = (Qui + Qn - 2Q12-2Qg5 ) sin® @ cos’6 + Qs (sin' @ +cos*d )

(2.21)

The positive angle 6 is taken from the x-axis to thel-axis

counter clockwise, as shown in Fig. 2-6.

And €., €, and y, are the strains at any point through the

laminate thickness, and can be given as (Jones, 1975);
£, = &+ zk, (2.22)

€, = €.+ zKk, (2.23)
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}’xy = },:v + kay

Also, they can be written in the matrix form;

gX E: KJ
& | = |g | +Z |K,
},XT y:y K’J’

(2.24)

(2.25)

Where & , & and ?{; are the laminate middle surface strains,

and they are given as ;

— Ou
S~

(2.26)

(2.27)

(2.28)
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The curvatures K., K,, and K,, of the laminate middle

surface are given as (Jones, 1975);

ow?
= .9 2.29
K, o (2.29)

K, =-2% (2.30)

— 20w
XY axa}}

(2.31)

where ;
Uo, Vo and W, : The middle surface displacements in x, Yy, and

z directions of the laminate, respectively.

Z : The distance from the middle surface of the laminate to

any point through its thickness.

Thus, the stresses in the k™ layer can be expressed in terms of
y p

the laminate middle surface strains and curvatures as;
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g, én E:z ém £, K:
o, =|Qn  On Oyl {le |+2|K, (2.32)
Ty g s O Oes < g;; K,

Also, the stress-strain relation for a composite lamina can be

given by using the compliance matrix, S;;, (Jones, 1975).

g S, S 0 || o,
& =Sy S, O |]e, (2.32)
Y12 O 0 S, 2P

L%

~

Where
|
Su J_‘Z—
1
-, -
Sl}_: Ei-= E21
| 2
1
Slzz’fs
S, =— (2.34)
* G, .

and for a generally orthotropic lamina, the strain-stress relationships

in the x-y plane are (Jones, 1975);

ng ] St S Ss | Fo-.r ]
£, | = E:: 15'_22 Ez(, o, (2.35)
_-}’ w | S 61 S 62 S 66 ] __T.\'_r ]
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where
Sn =8, cos*0+2(S, + S, )sin?6 cos?@ + Sy, sin*é
Sn=8,(in0 +cos“¢9)+(Sll +8,, 8, )sin @ cos? @
S =8, sin*6+ (25, +S,)sin’ 0 cos’ @ +35,, cos* @

Sie = (28, - 25, - S,,) sin 6 cos’ 0 - (25, - 25, - Sy ) sin’ 6 cos® &

S = (28, =28, - Si) sin® 6 cos 6~(25.~25,-S5,)sin’ 6 cos*
See
Se = (28, +25, -4S, - S, )sin 20 cos? 6 — Se(sin * + cos * 0)

(2.36)

For arbitrary orientation of a lamina, the stresses in x and y
directions can be transferred to 1 and 2 directions (1.€, principal
material directions) by using the transformation matrix [ T]as

follows  (Jones, 1975, Vinson and Sierakowski, 1986).

0, o

o,| = [7] cr: (2.37)

Tja Ty

where [T] , the transformation matrix, is given as (Jones, 1975);

1

7
o
o
O
2
8
e
5
g
S
O
g
B



2.5 Forces and Moments

By integrating the stresses in each lamina through the laminate
thickness, the result will be forces per unit length and moments per

unit length acting on the lamina as shown in Fig. 2-7.

x Pf2 4 N Z* O—x
Ny = [ lo,le=% |lo, | (2.40)
-512 K=1 Za
N, Ty T,
and
Mx 12 GI N 2y O-x
Myl=Jlo, | za=3 [l|o,| za& (2.41)
M 112 T — K=l z,, -
xp x Lig X
where

Ny, Ny, and N, : Forces per unit length.
M, My and M,, : Moments per unit length.

t : laminate thickness.

Zy and Z,, : Distances of the top and the bottom of a layer,

respectively, from the middle axis , and defined in Fig. 2-8.

Note that Zo = -t/2

N : Number of layers in the laminate.

KR
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FIG. 2-7. Posltlve Directlons for Stress Resultent and Stress Couples for A Plate .
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The integration indicated in Eqs.(2.40) and (2.41) can be
rearranged by replacing the stress vector in these equations

with the form in Eq.(2.32) to take the advantage of the fact that

the stiffness matrix for a lamina is constant within the lamina.

N, N én 512 atﬁ 2, £, z, | k-
N, |= Z 0. Q. Oy I 8; dz + I k,_ Z dz
Ko | — — _ 2, 2o
N‘)’ Q61 Q26 Q66 r }’J-'y Kx_v
(2.42)
and
M . N all 5]2 6!6 z, Ex z, K N
M_y = Z Q]] Q22 Q26 I gy Zdz + I ky Zldz
k=l 0 P2} ) Ze /] K-
M, O Qe Q Y o z K,

(2.43)

Since the middle surface strain (Sf,é‘ﬁandyj‘_) and middle

surface curvatures (k,, k, and k) are independent of Z, these values
can be removed out of the integration sings. Therefore, Egs. (2.42)

and (2.43) can be rearranged as (Jones, 1975, Vinson and

Sierakowski, 1986).

i6
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N, A Ay Ay Ex By, B,
N, |= Ay Apn Az £, {+| By B,
N, Asy % Ags }/fy By, B
and ,
Mx Bll B!2 Blﬁ S: Dll D
M, |=| By By By £, [+ Dy D
Mx_v Bél Bs: Bsé 7:; Dﬁl D
where

A; is the extensional stiffnesses and

N
Aij =
k=1

Qi) (Zx- Zya)

Bij 1

7]

the coupling stiffnesses and
— 1 ¢ —.. 2 2
Bij -3 > (Qlj)k(zk'zk—l)

1

D; is the bending siffnesses and

D; = ! i (o1 K (Zi-Zi_l)

3 t
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(2.46)

(2.47)

(2.48)
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Also, Ay, By and D; matrices can be written in terms of the

layer thickness (t) and the distance to the centroid of the k™ layer
(Jones, 1975).

Ap = 3 (@) (2.49)
B, = 3 (@i () (%) (250)
Dy =3 (@ik(u Z+2) @s1)

It is seen that the [A] matrix is the extensional stiffnesses

matrix relating the in-plane stress resultants (N’s) to the mid -

surface strains (&”’s), and the [D] matrix is the flexural stiffness

matrix relating the stress couples (M’s) to the curvatures (K’s). Since

the [B] matrix relates (M’s) to (£’s) and (N’s) to (K’s), it is called

the bending-stretching coupling matrix (Vinson and Sierakowski,
1986).

2.6 Middle Surface Strains And Curvatures

The resultant forces and moments given in Eqgs. (2.44) and

(2.45) can be written in the compact form (Jones, 1975).
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or
N=A & + Bk
M=B& + DK

Solving Eq. (2.53) for &°;
&€=A'"N-A'"BK

Whereupon Eq. (2.54) becomes :

M=BA'N+ (-BA'B + D)K

Egs. (2.55) and (2.56) can be written in matrix form:

[50 |4t 4B N
M| B4 D-BA'B|lK
or

& = A*N + B*K

M=H*N + D*K

iy

(2.52)

(2.53)

(2.54)

(2.55)

(2.56)

(2.57)

(2.58)

(2.59)
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Solving Eq.(2.59) for (k) and substitute in Eq.(2.58) to get :

K=D"'"M-D*'H*N (2.60)

&=B*D"'M+ (A*-B*D* " H*) N (2.61)
Thus,
&’ A*-B*D*"' H* B*D*" N

- 2.62
[KJ {-D*"H* D*! HMJ (262

or rewrite Eq. (2.62) as (Jones, 1975).

HER M 2.63)

wherein (h; ) can be shown to be equal to (b;) by virtue of the
symmetry of A,B and D matrices and the definitions of the a;, by, d,,

A*, B* and D* matrices, and the matrix coefficients in Eq. (2.63)

are symmetric (Jones, 1975).

2.7 Symmetric Laminates
2.7.1 Introduction

When the structure is exactly symmetric about its middle
surface, this requires symmetry in laminate properties, oreintation,

and location from the middle surface . all of the Bij components are

40
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equal to zero, for the symmetry of the (0, ) and the thickness (tx).

such laminates are usually much easier to analyze than laminates

with coupling, unless some applications require structures with an .

unsymmetric laminates (Jones, 1975, Whitney, 1987 ).

Therefore, Eqs.(2.44) and (2.45) for symmetric laminates are

simplified to :

N o
* Ay Ay Ay £y
Ny L= a4y Al e (2.64)
ny Ag Ag Ay Yo
and
M, D, D, D Kx
M, | = | Dy Dy Dy, | | Ky (2.61)
M D, D¢, D Kxy

xy

Special cases of symmetric Laminates will be described in the

following subsections.

2.7.2 Cross - Ply Laminates

A special case of symmetric laminates, regular cross-ply
laminates, occurs when the laminae are all of the same thicknesses

and material properties, but have their major principal material

41
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directions alternating at 0° and 90° to the laminate axes. The
laminate must have an odd number of layers to be considered as a
symmetric laminates, for example 90°/0°90°, where fibrous
direction of even -numbered layers are in the 1- direction offhe
laminate, and the odd-numbered layers are in the 2- direction of the

laminate as shown in Fig. 2-9.

A more general example of symmetric cross- ply laminate is

shown in Table 2-1. _

TABLE 2-1 Symmetric cross-ply Laminate with five layers

Layer | Material properties Orientation | Thickness
k Qn Qi2 Q2 Qss 0 tx
1 H, H, H; H, 0° 2h°
2 G, G, G; Gy 90° 4h°
3 H, H, H; H, 0° 2h°
4 G, G, Gs; Gy 90° 4h°
5 H, H, H; H, 0° 2h°
v

For symmetric cross-ply laminates, resultant forces and

moments, in which there is no bending -extension coupling can be

given as (Jones, 1975).
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FIG. 2-9. View of Urnbonded Three Lo'y(’r‘ed Regular Symmetric Cross

-Ply Lanmincte,
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N, A4, 4, (‘EO
N, I = 4, Ay €y (2.66)
N, 0 0 A _},:y |

and
M, D, D, 07|k,
A/[y = Dzl Dzz 0 Ky (6_67)
Mxy 0 0 D“' Xy

As shown above, values of A5Az,D;s and Dy are equal to
zero, for the zero values of (9, ) and (0, ) .Where (0, ) and (0, K

are zero for lamina principal material property orientations of 0° and

90° to the laminate coordinate axes.

If one consider the special, but practical, case of odd-
numbered layers with equal thicknesses and even- numbered layers
with equal thicknesses, but not necessarily the same as that of the
odd-numbered layers. Then, two geometrical parameters are
important : N, the total number of layers, and M, the ratio of the total
thickness of odd-numbered layers to the total thickness of even-

numbered layers (called the cross-ply ratio) (Jones, 1975). Thus,

A{ = Z k-mH’k

-—Z . (2.68)
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For example, the cross-ply ratio, M, for the liminate given in
Table 2-1 is calculated as ;

M= 2R + 2K + 2K
ahn° +45°

_3
4

hesis Deposit

where h° has a constant value.

Also, for such laminates, the ratio of principal lamina ,
siffnesses , F, can be defined as (Jones, 1975) ;

(2.69)

Therefore, the laminate siffnesses, Aj, Bjand D

ij» €an be given
in terms of N\M and F (Jones, 1975) ;

A, = M+F)t
=g MR,
A|2=IQ|2
y =I-J-MF 4,
M+ F

45




Age =10 (270)

B -0 2.71)

D = ’F (2.72)

Where

_ | +M(N—3)[M(N—1)+2(N+l)]
1+ M) (N =D+ M)

(2.73)

2.7. 3 Angle -Ply Laminates

Regular symmetric angle-ply laminate has orthortropic
laminae of equal thicknesses and opposite signs of the angle of

orientation of the principal material properties with respect to the

16
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laminate axes, and to satisfy the symmetry requirement there must

be an odd number of layers. For example an angle-ply laminate with

3-layers arranged in the following sequence + ¢ /-0 /+¢ , as

shown in Fig. 2-10.

A more general example of symmetric angle-ply laminate is

shown in Table 2-2.

TABLE 2-2 Symmetric angle-ply Laminate with five layers

Layer | Material Properties Orientation | Thickness
k Qu Qi Q2 | Qes g ty

] N, N, N; |N, |+60° 2h°

2 R, R; R; Ry |-30° 4h°

3 L, L, L; Ly +15° 2h°

4 R, R, R; Ry [-30° 4h°

5 N, N, N3 [N, |+60° 2h°

The force and moment resultants

laminate can be written as (Jones, 1975).

and

47

for symmetric angle-ply

(2.74)
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FIG. 2-10. View of Unbonded Three Loyered Regular Symmetric Angle-Ply Laminate.
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M, | = [Pn Dy DK, (2.75)
M, Dy, D, Dy ny .

The laminate stiffnesses for a symmetric angle-ply laminate can be

given as (Jones, 1975);

AII.AU > A22 ’ A66: =t (@l]’_Q—lz’én’é(»é)

Ajg, Ags, = %(-ths’ézs)

(2.76)
Bi=0 (2.77)
DII,DIZ; D22: D66 = 112‘ (@11:@12’622’-_@—&5)
ro(3N-2) —~ —
=0 78
D¢, Dy, 3 ( 7 ] (06,05) (2.78)

All the Aij and D

ij are required because of coupling between
forces and

shearing strain, shearing force and normal strain, a

normal moment and twist, and twisting moment and normal strains.

But values of Ars, Az, Dy and Dy decrease in proportion to

(I/N) as N increases, where N is the number of layers in the

symmetric angle-ply laminate (Jones, 1975), Also, small values of

A, Az, Dy¢ and Dy can be quite small when compared to the

other elements in Ajjand D;;, respectively.
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Chapter Three

FAILURE THEORIES

3.1 Introduction

Failure of a structure can be defined by the occurrence of
yielding or fracture of the material of that structure, where yielding
will occur when a slip between two planes of atoms takes place, while
fracture is the separation of a material under stresses into two or more
parts (Jones, 1975); Therefore, many theories and models were

developed to study the failure behavior of a structural material.

The failure behavior of fibrous composites differs considerably
from that of homogeneous isotropic solids due to the large number of
possible failure mechanisms in a loaded composite materials
(Herrmann and Ferber, 1992), and because of various characteristics
of composite materials, it is difficult to determine a strength theory in

which all failure modes and their interactions are properly accounted

for.

Failure modes can be either fiber dominated, matrix dominated
or interface dominated, for example; fiber breaks, matrix and interface
cracks, fiber pull out as well as the plastification of the matrix material
(Herrmann and Ferber, 1992, Harris et al., 1988 ). But these basic
micromechanics would appear as more important features to material

scientists or material designers, for structural designers the important
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element to consider is the lamina made of a chosen fiber-matrix

system.

Strength theories of fibrous composites are based mainly -on
macromechanical behavior of composites, which predict the failure of
a composite subjected to combined loading . These failure theories are
necessarily anisotropic and generally form various extensions of the
isotropic yield criteria. However, the prediction of yield surfaces in
unidirectional metal matrix composites necessitates a micromechanics
analysis because the yielding of the matrix is a localized phenomenon
which requires a sufficiently accurate stress analysis of the

representative volume element.( Aboudi, 1988), for example;

Pindera and Aboudi (1988) prepared a micromechanics model to
gencrate initial yield surfaces of unidirectional and laminated metal

matrix composites under a variety of loading conditions.

In this study, the lamina is assumed to be macroscopically
homogeneous, linearly elastic and orthotropic, and the fibers and

matrix are homogeneous, linearly elastic and isotropic.

Also, the fibers are assumed to be perfectly aligned and

regularly spaced and the bond between the fibers and the matrix 1s

considered to be perfect.

If the laminate stresses are known, then the stresses in each

lamina ( in the principal material directions) can be compared with the
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3.2 Literature Review of Failure Theories

Prediction of the failure strength of a material under effective
stresses IS very important to determine either the laminate
characteristics necessary to withstand a given load or the maximum
load a given laminate can withstand. To solve this problem, many
theories and models were developed, and in this section some of these

failure theories are presented.

The Maximum Principal Stress Theory was one of the earlijest
failure theories proposed by Rankine (1858) for the yielding of
homogeneous isotropic material. This theory assumes failure to take
place when the stress in a structural element exceeds the yield strength

of the material in a simple tension or Compression test (Vinson and
Sierakowski, 1986 ).

The Maximum Strain Theory proposed by Saint Venant (1797)
for homgeneous isotropic material. This theory states that failure
occurs when at any point in a structural element the maximum strain
at that point reaches the yield value equal to that occurring in a simple

uniaxial tension or compression test (Jones, 1975, Popov, 1968).

Two other failure criteria for homogeneous isotropic materials
are the Maximum Shear Theory often referred to as Tresca's Theory
and the Distortion Energy Criteria often referred to as Von Mises

Criterion (Vinson and Sierakowski, 1986 ).
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Maximum Shear Stress Theory suggests that yielding will occur
in a material when the maximum shear stress in the material equals the

maximum shear stress at yielding due to simple tension test.

Distortion Energy Criteria was attributed to Von Mises (1913) .
This theory assumes that yielding will take place when the distortional
energy at any point in the body becomes equal to corresponding

energy due to yielding in the simple tension test (Vinson and
Sierakowski, 1986 ).

But fibrous composites are both heterogeneous and orthotropic |
so the previous mentioned criteria and new other theories were

extended for such composite materials.

Jenkins (1920) extended the Maximum Stress Theory to
orthotropic materials. He stated that failure will occur when one or all
of the orthotropic stress values exceed their maximum limits as

obtained in uniaxial tension, Compression, or pure shear stress tests
(Vinson and Sierakowski, 1986 ).

The Maximum Strain Theory extended by Waddoups (1967)
assumes that failure will occur when the resulting strains along the

principal material directions exceed their limiting values.

Hill (1948) initiated one of the earliest interactive failure
criterion for anisotropic materials. This theory is a generalization of
the isotropic yield behavior of ductile metals for the case of large

strains (Vinson and Sierakowski, 1986 ).
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An extension to Hill's criterion to account for unequal (CASION
and compression for anisotropic materials was introduced by Marin
(1956). Another extension was carried out by introducing nine stress
components to define failure; three tensile, three compressive rand

three shear strength components.

The plane stress results by Hill were simplified for the case of
fiber reinforced composites by Azzi and Tsai (1965) by assuming the
composite material to be transversely isotropic. Hoffamn (1967)
generalized this theory by considering the effect of brittle materials

(Vinson and Sierakowski, 1986).

A generalization of Hoffman result was proposed by Tsai and
Wu (1971) to incorporate a more comprehensive definition for failure

(Vinson and Sierakowski, 1986 ).

Tennyson et al. have shown that the failure surface in three-
dimensional (3-D) stress space is not closed in the compression-
compression quadrant. Thus, infinite strengths are predicted . An
analytical model was developed by Jaing and Tennyson (1989)to

ensure the closure of the cubic tensor polynomial failure surface.

Feng (1991) introduced a failure criterion based on the strain
invariants of finite elasticity. This criterion assumes the failure to
occur at the position of maximum strain energy density. Another
criterion developed by sandhu (1976), was based on the concept that
the lamina fails when the sum of the ratios of current energy levels to

the corresponding maximum energies equals unity,
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A new failure criteria based on the total strain energy density of
an equivalent linear elastic system was developed by Abu-Farsakh and
Abdel-Jawad (1994). In this criterion the multi-nonlinear responses of

the material were taken into account. This criterion will be called AF -

Al Criterion.
3.3 Description of Failure Criteria

In this section , some of failure criteria mentioned previously

will be described under plane stress conditions.

3.3.1 Maximum Stress Theory

Maximum Stress Theory assumes that failure occurs when the
stress in any of the principal material directions (0,,0,,7,) exceeds

the maximum strength of the material in that direction, that is (Jones,

1975 );
O'|> Xk

0’2> Yk

lta] >S (3.1)

where

Xk Y, and S are maximum strength of material (lamina) in principal
material directions, k =t for tension and k =¢ for compression, and

[,2 are principal material directions.
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Xk, Yy, and S are maximum strength of material (lamina) in principal
material directions, k =t for tension and k=c¢ for compression, and

1,2 are principal material directions.

Note that shear strength is independent on the sign of 3.
3.3.2 Maximum Strain Theory

Maximum Strain Theory assumes that failure occurs when the
strain in any of the principal material directions (&, ,£,, ,, ) exceeds

its limiting values, so failure will take place when one of the following

inequalities 1s violated (Jones, 1975);
g < Xg,

< Ye,

]7:2’<S£ (3 2)

where

(Xe, Ye and Se ) are the maximum strains in the principal material

directions, k = t for tensionand k=c for compression and 1,2 are

material principal directions.

S8

——AHRghts Reserved - Library of University of Jordan - Center of Thesis Deposit



3.3.3 Tsai - Hill Criterion

Hill developed a yield criterion for anisotropic materials which

can be written in terms of the stress components as (Vinson and

Sierakowki, 1986) ;

(G+H) o+ (F+ H) J;+(F+G)af-2Ho',crz-2Galo‘3-2
Foyo, +2L 73+ 2M ) + 2N72 = | (3.3)

where the quantities F, G, H, L, M, and N reflect the current state of

material anisotropy.
For unidirectional reinforced composites M =N, G = H. Therefore,

F(02'03)2+ G (GJ - 0'1)2+ G(O'l - Uz)2+2LT 53 +2M (Til + TIJZ ): 1
(3.4)

For a composite lamina or laminates ina plane stress, Eq. (3.4)

becomes (Vinson and Sierakowki, 1986) ;
Fo} + G o}+H (o, -0,)+2N 72 = | (3.5)

Now to find values of F, G, Hand N in terms of the lamina
strengths in principal material directions ( X, Y, and S). We can
assume that only o, acts on the body with its maximum value X. Then

by returning to Eq. (3.3), this case will result in ;

G+H = XL (3.6)

Similarly, if only o, acts on the body, then
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1
- + =
F+H = (3.7)

And if only 7,acts on the body, then

_ 1

Now if the strength in the 3- direction is denoted by Z and just o, acts

on the body, then
F+G =4 (3.9)

Z2

By using Egs. (3.7), (3.8) and (3.9) the following relations between
F,Gand Hand X, Y, and Z can be written as ;

1 | 1
2H = v (3.10)
_ 1 | 1
6= vz G-1)
1 1 1
W= —horr (3.12)

Now by using the relations in Eq. (3.10) and by considering

plane stress state, Eq. (3.5) can be rewritten in the following form;

oy L9 00 Th_, (3.13)
Xy X S’ ’

6
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3.3.4 Tsai- Wu Criterion

This theory incorporates unequal tensile and compressive failure
strengths as an inherent part of development . In this criterion failure
is assumed to occur when the following equation is satisfied (Vinson

and Sierakowki, 1986) ;

Fio =Fj0, 0 =1 (j=12....6) (3.14)

where the quantities F, and F, are related to tensile and compressive

yield strengths of the material.

For the case of plane stress state , Eq. (3.12) can be written in

the following expanded form;

F, 0’|+F20'2'+‘F6 1'12+F11 0'12+F22 022+F66T 32‘*‘2}:]20'10231

(3.15)

where F), F,, Fs, Fi1, Fy, Fg, and Fy; can be given as (Vinson
and Sierakowki, 1986) ;

ol
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Yt Ye
_ -1
22 Y1 Yo
1 1
Fe= —
6 S+ S-
1
Fer = 3.16
6= (3.16)

By noting that shear strength in material principal directions is
independent of the sign of the shear stress then;
F6 =0
_ 1
Fee = < (3.17)
The remaining stress (F);) is determined from a biaxial tension

test where o, = o, = o* and all other stresses are zero. After the

biaxial tensile failure stress, o *, is determined and substituted in Eq.
(3.13), the following result is obtained ;

Filo* + Foo*+F 0* +Fpo* +2Fh0* =1 (3.18)

Then , Fy; can be obtained by using Egs. (3.14) and (3.16)

Fj2 can be given as;

£ Fy (3.19)
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3.3.5 Sandhu Criterion

This failure criterion assumes failure to occur in the lamina

when the following equation is satisfied (Sandhu, 1976).

K ( f o,de,]m +K2[ [ crzdgz]m +k{ [ dgGJm =1 (3.20)

£

where

Ki = [ I O',dg,J"” (3.21)

For 1 = 1,2, and 6. where (¢,) are the principal ultimate strain
components obtained from simple loading test and (m;) are called the
shape factors, parameters define the shape of the failure surface in the

strain-energy space, and these factors are determined by using

experimental data (Vinson and Sierakowki, 1986) ;
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3-4 Analysis Procedure

In this section, a procedure for prediction of the failure load and
its location is given in step by step as shown in the flow chart in
Fig. 3-2. The methodology is to obtain the strength of the lamina by
increasing the applied load gradually until the first-ply failure of the

laminate occurs.

During each increment of the load, stresses and strains of each
lamina are computed and transformed from X-y plane to the
orthotropy plane. These transformed values can be used in one of the
previous criteria, so failure can be predicted and located for the

laminate . The analysis procedure can be summarized in the following

steps:

1-Calculate lamina stiffnesses in the orthotropy plane by using either

the lamina properties or the stiffnesses of the fibers and the matrix.

2-Calculate transformed stiffnesses for each lamina corresponding to

the positive angle ( ¢ ) from the x - axis,
3-Calculate laminate stiffnesses [ A ]1,[Bland[D].
4-Calculate middle surface strains and curvatures of the laminate,
5-For each lamina, calculate its strains in the X-y plane.

6-From strains in step (5) , calculate lamina strains in 1-2 plane by

using the transformation matrix, [T].
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7-Calculate stresses for each lamina in principal material directions.

8-Stresses in step (7) can be used in a selected failure criterion to

predict failure.

9-1f no lamina fails, the load is increased and steps 4, 5, 6, 7, and 8

are repeated, successively.

10-1f a lamina fails, the load and location of the failure are recorded.

06
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CHAPTER FOUR

Bending Of Composite Plates And Beams

4.1 Introduction

In Chapter 2, the governing  constitutive equations were
developed in detail describing the relationships between resultant

forces (N,, Ny, Nyy), resultant moments M,, M,, M,,), in- plane
midsurface strains (£7,¢;,£7) , and the curvatures (K,, K,, K,,) as

seen in Eqgs. (2.44) and (2.45). These will be utilized with the
strain—displacement relations and equilibrium equations, which wil]
be given later in section (4.2) to develop structural theories for thin
walled bodies, the structural from in which fibrous composite

materials are most generally employed.

Also, in this chapter, plates and beams under different loading
and supporting conditions will be studied to develop the governing
differential equations for these structures. Then, these equations can
be solved by using a direct method approach to find maximum
stresses and deflections, so maximum stresses in each ply of the

laminated composite can be compared with a selected failure
criterion.
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The laminated composite is considered to be symmetric (i.e,
Bjj = 0), has no other coupling terms, ( )i=( )y = o0, no surface
shear stresses and no hygrothermal effects , Also , as in classical

plate theory, transverse shear deformation is excluded, that is

€2 =€,=0. (Vinson and Sierakowski, 1986).

Special cases of loading and supporting conditions will be

taken into consideration to show the analysis procedure.
4.2 Equilibrium Equations

In mathematically modeling solid materials, including the
laminates, a continuum theory is generally employed where a
representative material point within the elastic solid is selected as
being typical of all materials points in the body or lamina.
The material point is given a convenient shape; in this study the

convenient shape is a small cube of dimensions dx, dy and dz as

shown in Fig. 4-1.

In addition to the surface stresses acting on the control element
shown in Fig4-1, body force components F,, Fy and F, can also act
on the body proportional to the control element volume (le, its
mass) such as gravitational , magnetic or centrifugal forces (Vinson
and Sierakowski, 1986).

A force balance can be made in the x, y and z directions

resulting in three equations of equilibrium, respectively;

0
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Fig.4-1. Coordinate system , geometry , and nomenclature .
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(4.1)

(4.2)

(4.3)

For beam and plate theory, whether involving composite

materials or not, one must integrate the stresses across the thickness

of the thin walled structures to obtain solutions (Vinson and

Sierakowski, 1986).

4.3 Bending Of Composite Plates
4.3.1 The Governing Differential Equation

A rectangular thin plate is defined as a body of length (a) in
the x-direction ,width (b) in the y-direction , and thickness (h) i in the

z-direction , where h << b,and h <a as shown in Fig. 4-2.

Consider a plate made of a laminated composite material that

is symmetric and no body forces act on it.

The equilibrium equations for bending of such plates due to

lateral loads are given as (Vinson and Sierakowski, 1986).

(BM
oM, Q=0
ov oy

(4.4)
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Fig.4-2. A rectangular thin plate .




oM, oM

o + % -y=o0 (4.5)
%+ ag” ~P(x,y)=0 (4-6)

Where

Qx and Qy are shear resultants in the z- direction defined by
(Jones, 1975).

Qx ad & ze
[QJJ ) k=1 ZI [O'ydek (4.7)

y of University of Jordan - Center of Thesis Deposit

Where

Zy and Z,, are defined in Fig. 2-8.

P (X.y}=Pi (x,¥)~ P, (x,y) (4.9)
Where

Pl (X:Y) = 0o, (Zn) :
P, (xy)= o, (Z) '

Without going into details and by following the derivation
given by Vinson and Sierakowski (1986), the governing differential
equation for bending of a plate composed of a composite material,

excluding transverse shear deformation, no coupling terms (B =

( Jie=( )6 =0), no hygrothermal terms and subjected to a lateral
distributed load p (x,y) is given as ;

4



o'w o'w 3w

D Gt DS g Dyt = P y) (4.10)
Where

D;=D,,

D, = Dy

D; = (D12+ 2 Dge) (4.11)

Where D,y, Dy;, D;, and Dg are elements in the [D] matrix and
defined by Eq. (2.48).

Solution of Eq. (4.10) can be obtained by using direct
methods, which fall into three categories: Navier Solutions, Levy
Solutions and Perturbation Solutions. Each of them has its

advantages and disadvantages (Vinson and Sterakowski, 1986).

4.3.2 Plate Boundary Conditions

In classical plate theory, only two boundary conditions are

needed at each edge of the plate and they are identical to those of

classical beam theory.

For Simply supported edge, the boundary conditions are ;

w=0

a?
M= 2o, (4.12)

For clamped edge, the boundary conditions are ;

-0 (4.13)
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For free edge , Kirchoff formulated an approximate solution

with the boundary condition (Vinson and Sierakowski, 1986, Vinson
and Chou, 1975);

V. =0, + "= o (4.14)

Where (n) is the direction normal to the plate edge, (t) is the
direction parallel or tangent to the edge, V, is the effective shear
resultant, Q, is given by equation (4.1) or (4.5), M, and M,, is given
by (2.45).

4.3.3 Navier Solutions For Plates Of Composite
Materials

As mentioned before, three methods can be used to solve the
goveming differential equations for bending of plates, the method
that will be considered is the Navier solutions. In the Navier
approach for the case of the plate being simply supported on all four
edges, one simply expands the lateral deflection, w (x, y) and the
applied lateral load p (x, y) into a doubly infinite half range sine
series because that series satisfies all of the boundary conditions

(4.12) exactly . (Vinson and Sierakowski, 1986).

wxy) =3 T4 snt= sin™2 (4.15)
mul n=l g

a

P (x,y) = i ia Sin ™% sin 2 (4.16)

a

16
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4.3.4 Uniformly Loaded Simply Supported Plate

A case study is taken so that the laminated plate is subjected to

a uniformly lateral load, P (x,y)= P,, and simply supported on all

four edges. The governing differential equations for such plates are
solved by using Navier Direct Method for its excellent results for

plates with all four edges simply supported as mentioned in (Vinson
and Sierakowski, 1986).

Using the Navier Method discussed previously it is found that

the stresses in each lamina for the case of p (x,y) = P, are given by

(Vinson and Sierakowski, 1986).

O-x
_le Pz & = 1
N x’ Z mnD
m=1,3,5 n=1,3,5 MA
Ty |,
[ [ c(mY L (n ] mzy-
-0, -—J Q,z(—) sin sin —=
L \a b) | a
« e rm) U nzy
_le - "sz " sin smn —=
i \ad b a
20k ﬂ) (2] cos 7% cos —nﬂ}
L \a b a
h (4.17)
WIECIEC

ab

D=D, [g) c2D + 2DM)[ﬂ]- . D(;) (4.18)
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4.4 Beams And Rods Of Composite Materials
4.4.1 Simple Beam Theory

When the structure of Fig. 4-3 is subjected to a lateral load in
the x-z plane, in the z- direction, the term beam is used to describe
this structure, while when the same structure is loaded in the x-

direction by tensile or compressive forces, the term rod or column is

used, respectively.

Because the beam is so narrow (b <<L), strains are ignored in

the y-direction, implying that all Poisson’s ratio effects can be
ignored (that is a classical beam assumption), and for simplicity, the
beam has a mid-plane symmetry and has no hygrothermal effects.
Lastly, there is no y- direction dependence on any quantity involved
in the set of governing equations. The beam will only react to the
difference between P, and P,, the normal surface tractions on the top

and bottom surfaces, hence (Vinson and Sierakowski, 1986).

P(x) = P,-P, (4.18)

The remaining constitutive equations for this beam are
(Vinson and Sierakowski, 1986).

HJJ =[/:) ;][2] (4.19)

78

y of University of Jordan - Center of Thesis Deposit



1S0Ge@ SISy L JO e - Ueplor JOo AYISeAIUN JO Akeld!T - PaAeSaY SIYDIY-HY.

Fig.4-3. Nomenclature for a beam , column or rod .
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Returning to the plate equilibrium equations in section 4. 2, and
from the beam assumptions made, the remaining eqmllbrlum

equations become (Vinson and Sierakowski, 1986).

‘fi‘x’r ~0 (4.20)
‘i% +P(x) =0 (4.21)
%_Q, o (4.22)

Since nothing varies in the y-direction for the beam, it is both

traditional and easy to multiply all of the above equations by the
beam width, b, hence:

P=N,b

V=Q, b

M, =M,b

qx)=Px)b (4.23)

Therefore, the governing equations for a beam of composite
materials subjected to lateral and in-plane loads and by ignoring

hygrothermal effects and transverse shear deformation are (Vinson
and Sierakowski, 1986).

P=bA, “d? (4.24)

M,=-b D, 4¥ (4.25)
dx
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L= (4.26)
i =0 (427)
d_iii_ V=0 (4.28)

Integration of Eq. ( 4.24 ) gives the relation for the mid-
surface in-plane displacement, u, :

Uo (X) = (;Hmc,, (4.29)

1!

Where

Co 1s constant of integration and can be determined by where

U, (X) is specified. Note that P is constant as given in Eq. (4.26).

If a rod is loaded by a tensile axial load P only, Eq. (4.29)
provides the displacement, from which all stresses in every ply can

be determined by (Vinson and Sierakowski, 1986).

.1 =[o.] [z]=[a, ) ( CZ"J (4.30)

For the case where Pisa compressive load, the same applies,
except if the load P that would cause buckling is sought , a more

refined theory is needed (Vinson and Sierakowski, 1986).

Substituting Eq. (4.25) into Eq. (4.28) and the result into Eq.

(4.27) results in the following governing differential equation for
bending of the beam :

81

——t—RrOPts Reserved—=—t-ibrary of University of Jordan - Center of Thesis Deposit



d'w

bD“"d7=q(X) (4 31)

Once the solution of w (x) is found from (4.31) the stresses in
each ply can be calculated by :

el -2 lo] k1--fos] - £ (432)

Now, if both in-plane and lateral loads occur simultaneously,

then the stresses in each ply are found by the sum of Egs. (4.30) and
(4.32);

—1 du, [—1 d’w
[U:L = [QIILZ;—[QH]‘Z E‘ (433)

4.4.1Simplified Cases Of Composite Beam Solutions

For the bending of a beam, the solution of the governing
differential Eq. (4.31) will result in four constants of integration

which are used to solve boundary conditions at each end of the
beam.

There are three boundary conditions: simple-

support, clamped
and free.

For simply supported edge:

w=o M, =0

(4.34)
For clamped edge:
w=o M_, (4.35)
For free edge :
M, =0 V=0 (4.36)
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4.4.2.1 Clamped - Clamped Beam With A Uniform Lateral
Load

If a beam is clamped ateach end and subjected to a uniform

lateral load, q(x) = "q,, where q, is constant as shown in Fig 4-4 ,

then the solution of the governing differential equation results in the

following form :

4 3 2
_T9.x  Cx Cx

= Cx+C 4.37
5D, 24 6 2 Tl (4.37)

w(x)

Where constants C, through C; can be determined by using the

boundary conditions, Therefore,

q,L _-4.l P
Ty G, = 126D, C,=C, =0 (4.38)
Finally,
=%  [4_57,3, 2,2
w(x) =5 - [x 2Lx + L'x ] (4.39)

Where the maximum deflection is :

W__.=wli2)=

(ma) 3845D (4.40)

To find maximum stresses in each ply, it is essential to
evaluate the maximum bending moment, Mymay , and maximum
curvature , Kymayy . From Eqgs. (4.25) and (4.39)

h)
dw

M, =-bDyy —

=T [oxi - 615+ '] (4.41)

Where the maximum bending moment occursat x =o and L, and is
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Fig.4-4.Clamped-Clamped beam with a uniform lateral load
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Mb(mn) =M, (0,L) = F (442)

And the maximum Curvature is given by

Mb(max) -+ qOLZ _ _"dzw

K - = 443
T bD, 126D, ( )

Then, the maximum stress can be calculated for each ply
through (4.32) ;

[6x]k(max) = E] [Kx(max)] A :—[QTI]- (%J z (444)

Then, this [0, ]k (max can be compared with the allowable

strength values for each lamina with its specific orientation and

composite material system (Vinson and Sierakowski, 1986).

4.4.2.2 Clamped — Free Beam Subjected To A Uniform
Lateral Load.

Consider a beam cantilevered from the end x= 0 as shown in

Fig. 4-5. The deflection can be determined by using Egs. (4.37),
(4.35) and (4.36) as :

vy Lo [ 4 _ Y6720
w(x) ___24!71)” [x 4Lx" + Lx] (4.45)
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Fig.4—5.Clamped free beam with a uniform lateral load .
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And therefore, maximum deflection and bending moment are given

as,
—ag
Wiy = W(L) = = ;’5 (4.46)
gL’ '

Mb(ma.x) :Mb (O) = 5 (447)

Then, maximum stresses in such laminated composite beam
are grven by

O-x(max) = lQ—IleZ Kx(max) (448)
Where

M, L’
K:{nux) = Kx(o) = b_Db- = Z_i)?D_ (449)
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CHAPTER FIVE
RESULTS AND DISCUSSION

5.1 Introduction

In the previous chapters, theory and applications of fiber-
reinforced composites are studied for special cases of laminated
composites; regular cross-ply laminates and regular angle-ply
laminates. Also, bending in composite plates and beams is
investigated under different uniformly lateral loads with simply-
supported boundary conditions for the plate and with clamped-

clamped and clamped-free boundary conditions for the beam.

In this study, three composite materials are considered. These
materials are selected for their wide usage in industry, and they are:

- Glass-epoxy 3M XP2518S.
- E glass-epoxy.
- Boron-epoxy Narmco 5505.

Mechanical properties of these materials are given in
Table 5-1,where the mechanical properties of many other composite
materials are given in Appendix A. Typical stress-strain curves for

born-epoxy and glass-epoxy are adapted from (Jones, 1975 ) and
given in Appendix B.
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Variations in lamina stiffnesses, Q], with angle of orientation,

¢, are studied and presented in Fig.5-1 through Fig. 5-6 . Also,

variations in the elements of the compliance matrix, S,, are studied

and presented in Fig. 5-7 through Fig. 5-12. Also, fora symmetric
cross-ply laminate | the relation between the extensional stiffnesses,
4, and 4,, , and the cross-ply ratio, M, and stiffness ratio, F, are

presented in charts.

Failure of a single lamina made of boron-epoxy is determined

for different angle of rotation from the x-axis.

TABLE 5-1. Typical mechanical properties of composites used in

the study (Jones, 1975, Vinson and Sierakowski, 1986)

[ Property | Glass-epoxy | E glass-epoxy Boron-epoxﬁ
3M XP251S Narmco 5505
E  (10°psi) |7.80 8.80 30.100
E,  (10°ps)  |2.00 3.68 2.870
O 0.25 0.23 0.225 -
G, (0°psi)  |1.30 1.74 0.800
X {i0psi)  [150.00 187.00 197.500
Y (10psi)  |4.00 119.00 7.800
S (10psi)  [6.00 6.67 9.300
X, (0psi) [150.00 25.30 417.658
Yo (10°psi) | 20.00 6.50 37.885

Numerical results of two different failure theories, Tsai-Hill

theory and Tsai-Wu theory, are determined and studied for the two
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special cases of laminated composites; regular Cross-ply laminate
and regular angie-ply laminate, so these results can be compared
together and with other available results in literature. The applied

loads are per unit area.

Cases; the first one js studying bending in plates and beams made of
three unidirectiona] layers 6, =0, where k is the layer number. The

other case is studying bending in plates and beams made of three
cross-ply layers with 0°/ 9g° / ° stacking sequence,

A Computer program using FORTRAN 77 is developed by
Abu-Ayada (1998) to study the mechanica] behavior of Fibrous

stresses in composite Structures,
All numericaj results are presented and discussed in the

following subsections,
5.2 Variations In Lamina Properties With Angle Of
Orientation

3.2.1Variations In Lamina Stiffness

angle of rotation, ¢, Fig. 5-] through Fig, 5-¢ show the variation of

stiffness, Z)y » With angle of rotation for the E glass-epoxy composite
material. One can note that the variation of 0, is similar to that of
0, but out of phase, where maximum value of O, occurs at 0° and

180° while for these tWo angles the value of Q.. is minimum. 0,

90
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and @, vary in a similar manner and they are in phase. Also, there is

some similarity in the variations of Q,, and Q,,.

The dependence of @, onangle ¢ holds true regardless of the
material properties.

5.2.2 Variations In Lamina Compliances.

Equations (2.36) show how the lamina compliances vary with

angle of rotation,d. Fig.5-7 through Fig 5-12 show the variation of

compliance , Sy, with angle of rotation for the E glass-epoxy

composite material.

Variation in  Si1 with angle € is similar to that of S22 but out

of phase; the maximum values of Si occurs at 8= 90°and minimum
at @ = 0°and 180°, where the maximum value of Szz occurs at 8 =
0° and 180° and minimum at 8 = 90°. 3'12 has negative values of all

9 . and Sis and S are negative for 6 (90, and with zero

values at & =0°, 90° and 180°. Finally S. has its maximum value at

€ =0°,90° and 180° and its minimum at & = 45° and 135°.

It is obvious to mention that the designer can make the lamina

in the laminated composite with different rotation angles to get the

best properties, Q-J- and Sjof the lamina to contro! on stresses and

strains in different axes.
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3.3 Failure Of A Generally Orthotropic Single Layer

A single lamina is considered to study the relation between
failure stresses and angle of rotation, so a computer program is
developed to determine failure stresses of a generally orthotropic

single layer using two failure theories; Tsai-Hill and Tsai-Wu.

Results predicted by these theories are presented and discussed
for a lamina made of boron-epoxy Narmco 5505. Failure stresses of
this lamina with different angles of rotation are compared with
experimental failure stresses (Cole and Pipes, 1973), and failure
stresses  predicted by AF-AJ failure theory (Abu-Farsakh and
Abdel-Jawad, 1994)as given in Table 5-2 Data in Table 5-2 is

represented in Fig 5-13 to make easy comparison.

TABLE 5-2. Failure stresses (ksi) for boron-epoxy Narmco 5505
under tension loads.

6 Tsai-Hill Tsai-Wu AF-AJ Exp.
15° 34.97 3521 36.46 36.0
30° 17.65 17.82 19.74 18.2
45° 11.95 12.22 13.65 12.9
60° 9.36 942 10.07 945
75° 8.17 8.03 8.31 7.25
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As shown in Fig 5-13, the stresses predicted by using Tsai-
Hill, Tsai-Wu and AF-AJ criteria are in good agreement with the
corresponding experimental results but the Tsai-Wu failure theory
appears to be much more applicable to failure prediction for ihis

boron-epoxy Narmco 5505 composite than the Tsai-Hill criterion

In Tsai-Wu failure theory, number of terms in the prediction
equation 1s more than that in Tsai-Hill theory, Eq.(3.14.), and for an
orthotropic lamina under plane stress state, terms in Eq.(3.15)) that
are linear in the stresses are useful in representing different strengths
in tension and compression and the terms that are quadratic in the
stresses are used to represent an ellipsoid in stress space. However,
the term involving F); is used to represent the interaction between
normal stresses in the 1-and 2-direction in a manner quite unlike the

shear strength (Jones, 1975). Thus, Tsai-Wu tensor failure theory is

obviously of more accurate.
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54 First-Ply Failure Of Symmetric Laminated

Composite

In this section, two cases of symmetric laminated composites
are considered: Regular symmetric cross-ply laminate, and regular
symmetric angle-ply laminate. Through the following subsections,
failure stresses predicted by different failure theories are presented

in tables and charts to ease the comparison between experimental

and theoretical results.

3.4.1 Regular Symmetric Cross-Ply Laminate

Before going to study the failure in the cross-ply laminate, it
iS very important to study the effect of the cross-ply ratio, M, and
stiffness ratio, F, on the extensional stiffnesses Ajj of the cross-ply
laminate, where any change in the extensional stiffnessees, A;;, will

affect the failure stress of the laminate.

5.4.1.1 The Effect Of Cross-Ply Ratio And Stiffness Ratio On

The Laminate Properties,

As defined in section (2.7.2), the cross-ply ratio is the ratio of
the total thickness of odd-numbered layers to the total thickness of

even-numbered layers.
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As given in Eq.(2.70), extensional stiffnesses, Aj;, are
independent of number of layers in the laminate, N. However,_A”
and Aj depend on M, the cross-ply ratio, and on F, the stiffﬁess
ratio, as shown in Fig. 5-14 and Fig 5-15. For a composite material
with F =0.4, Ay, varies from (0.7 Qyyt ) to (0.94 Qt) as M changes
from (1) to (10). Similarly, A,, varies from (An) to (0.44 A})) over
the same range of M. The stiffnesses A;; and A are independent on

M and F. The remaining stiffness A,s and Ay are zero for all cross-

ply laminates.

5.4.1.2 Failure Of Regular Symmetric Cross-Ply

Laminate

In this subsection, failure stresses are predicted for a regular
symmetric cross-ply laminate made of glass-epoxy 3M XP251S
composite material. This laminate has three layers of the composite

material with (0°/90°/0°) stacking sequence and equal thicknesses.

Now, to study the effect of cross-ply ratio on the strength of
the laminate, predicted failure stresses under tension load for a Cross
-ply laminate with a stacking sequence of (0°/90°/0°) and different
cross-ply ratio are given in Table 5-3 with other available results

from (Tsai et al., 1966). Also, these results are shown in Fig. 5-16 to

get easy comparison.

L08
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TABLE 5-3. Failure stresses, (ksi) for three layerd cross-ply glass-
epoxy 3M XP2515 laminate under tension loads.

Cross-ply | Tsai-Hill Tsai-Wu Exp.
Ratio

] 9.98 9.15 8.47
2.5 12.59 11.93 11.29
4 13.7 14.31 15.53

As shown in Fig.5-16, for the cross-ply laminae with 0°/ 90° /
0° stacking sequence, failure stresses increase with increasing the
cross-ply ratio, M, and this increment is due to the increment in the
extensional stiffness A;; of the laminate and the reduction in

extensional stiffness A,,.
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5.4.2Failure Of A Regular Angle-Ply Laminate

Angle-ply laminates are used in mechanical applications more
than cross-ply laminates, for its ability to be in different stacking
sequences with different angles or rotation, which give the designer
many choices to satisfy the design requirements. Therefore, more
discusston of the behavior of this laminate is done than that of the

brevious case, cross-ply laminate.

Two composite materials are used, boron-epoxy Narmco 5505
and glass-epoxy 3M XP2518, with different orientation angles, 6, in
the stacking sequence +8/-8/+0.

The angle-ply laminate made of boron-epoxy Narmco 5505 is
studied under tension test with the following sequences:

- +30/-30 /430

- +45/-45 +45

- + 60/-60 /+60

These stacking sequences are selected in this way for boron-
epoxy Narmco 5505, because the main aim is to compare the
predicted results in this study with the available results (Cole and
Pipes, 1966) as given in Table 5-4.
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TABLE 5-4, Failure stresses

(ksi) for three layered angle-ply boron-

epoxy Narmco 5505 under tension loads.

Stacking | Tsai-Hill | Tsai-Wy Exp. N
sequence

30/-30/30 138.50 40.71 65.23
45/-45/45 16.27 17.25 19.20
60/-60/60 | 8.66 8.81 9.18

Where the angle-ply

laminate made of glass-epoxy 3M

XP251S is studied under tension and compression tests with

different angles.

Predicted values for tension and compression tests

are compared with available resylts adapted from Tsaj (1968). The

comparison is given in Table 5-5 and Table 5-6.

TABLE 5-5. Failure stresses
epoxy 3M XP2512 laminate

Stacking | Tsai-Hill | Tsai-Wa Exp. |
sequence
30/-30/30 |14.54 13.87 12.83 |
45/-45/45 | 8.98 8.31 6.33
60/-60/60 | 4.25 4.35 [ 4.60
TABLE 5

-6. Failure stresses (ksi) for three layered angle

epoxy 3M XP2512 laminate under compressive loads.

Stacking | Tsai-Hill | Tsai-Wy Exp.

sequence

45/-45/45 | 11.77 12.2] 14.90
60/-60/60 | 11.4] 11.98 13.72
75/-75/75 [15.38 15.87 16.47

14

(ksi) for three layered angle-ply glass-
under tension loads.

-ply glass-
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For angle-ply laminates made of boron-epoxy Narmaco 5505,
the stress-strain curves for this material show that the behavior in
fiber directions is linear in tension, the behavior in the direction
transverse to fibers is nearly linear in tension and the behavior is
highly nonlinear in shear, Appendix B. Therefore, this laminate
made of boron-epoxy Narmco 5505, is affected by the nonlinearity
of shear behavior which explains the difference between the
predicated and measured values as shown in Fig. 5-17. One can note
that the (+60%-60°/+60°) laminate has a very close predicted failure
stresses to the experimental values, where other laminates are highly

affected by the nonlinearity.

For angle-ply laminate made of glass-epoxy 3M XP2518S, the
stress-strain curves for this composite material show that the
behavior in fiber directions is linear in both tension and
compression, the behavior in the direction transverse to the fiber
directions is linear in tension and very nonlinear in compression, and

the behavior is nonlinear in shear, Appendix B.

Therefore, and as shown in Fig 5-18, predicted failure stresses
for angle-ply laminates under tension load are in good agreement
with the measured values, but for the laminate with the stacking
sequence (+ 45° /-45° +45°) the predicted failure stresses are very
high and far from the experimental values, for the high nonlinearly

of shear stress-strain curve, so shear failure takes place at this angle.
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Now, for the other case, the predicted failure stresses for
angle-ply laminates under compression load are very far from the
experimental values as given in Fig 5-19. This is due to the
nonlinear behavior in the direction transverse to fiber directions
under compression and the failure theories that don’t take into
consideration the nonlinearity behavior of the composite material
will give misleading result. In this study, criteria used to predict

failure stresses consider the material to behave linearly.
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5.5 Bending Stresses In Plates And Beams Made Of

Composite Materials

Bending stresses in a plate simply supported at all four edges
and made of E glass-epoxy composite material are analyzed at five
pomts in the plate to find where maximum stresses occur. Also,
bending stresses in a beam made of the same composite material are
analyzed for two different boundary condition, and for the two cases

first-ply failure is determined.

Complete results and discussion for bending of such plates and

beams are given in the following subsections.
5.5.1 Bending Of A Simply Supported Plate.

A simply supported plate is studied for the two following

cases,

- The plate 1s made of three layers of E glass- epoxy
composite material, where all the three layers are
unidirectional, ¢ =0° .

- The plate is made of a cross-play laminate with three layers

of a 0° / 90°/0° stacking sequence.
The plate in the above two cases has the following dimensions:

- Length (a) =12 in.
- Width (b)=12in.
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- Thickness (t) = 0.06 in .

- Lamina thickness (t,) = 0.02 in.

For this plate and by using Navier solution, it is found that the
stresses in each lamina of the plate for the case of P (x,y) = Po are

given as in equation (4.17) . These stresses are normalized as

o, =0,/ Po. (5.1)

Normalized stresses are shown at different points in the plate
where five points are considered with the following positions ;
-point]l: x=6in. , y=6in.

-point2: x= 3in., y=3 in.
-point3 : x =3in., y=9in.
-point4 : x =3in., y=9in.

-point5 : x =9in., y=3in.

5.5.1.1 A Plate Made Of Three Unidirectional Laminae

As shown in Fig. 5-20 through Fig. 5-25, the normalized
stresses are given for different values of z, where z is the position of

material from the mid-plane of the laminate.

Normalized stresses, o. and o., have negative values in the

upper part of the plate and positive values for the lower part, i.e. the

—_—————HRrOts Reserved—=tibrary of University of Jordan - Center of Thesis Deposit



upper part of plate is in compression while the lower part isin

tension and always o.) o,.

Maximum stresses occur at Z = ¥t/ 2, yet first-ply fatlure
occur at Z= t/2 at the upper surface of the plate which is under
compression . The reason is that the stresngh of the lamina is

compression is lower than its strength in tension, Table 5-1.

Normalized stresses, o. and o,, are the same at points 2,3,4

and 5, compression in the upper part and tension in the lower part.

For stresses (7x ), zero values are at the mid-point position,
and for points 2 and 4, positive values of stresses are in the upper

part of the plate while the lower part is under the same stresses but

with a negative sign. For points 3 and 5, 7 has the same values of
stresses as In points 2 and 4 but with a negative sign in the upper

part and positive sign in the lower part of the plate.
3.5.1.2 A Plate Made Of A Cross-Ply Laminate

Fig.5-26 through Fig.5-29 show that normalized stresses (o)

and (o,) are not linear in tension or compression with (z) values.

This happened at the interface points between layers with angles of

rotation equal 0° and 90°. Also, the upper part of the plate is under

compression and the lower part is under tension.
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Normalized stresses,o, , have same values for points 2,3,4 and

5 as shown in Fig. 5-28 and same thing is true for o, as shown in

Fig.5-29.

Normalized shear stresses, (z. ), have zero values at the mid-
point of the plate, while (r,) has positive values for (z > 0 ) and
negative values for (z < 0) for points 2 and 4 and same values for

points 3 and 5 but with opposite signs as shown in Fig.5-30 and
Fig.5-31.

——-—aAaAHRIghts Reserved - Library of University of Jordan - Center of Thesis Deposit



11S00_ S1S8Y L JO JBe) - Ueplor JO ANSIBAIUN JO ARl - PoARSay SIS N .

| QBUIWIE] [BUOI}ORIIPIUN S3IY) JO

epew ayerd ayj yo 1 jutod je < ( 0) “sas8213S PIZIBULION "07-S O[]

aa's

+— €00~

- ¢0°0-

T 100"
nw 000§}~ 0000¢- 0005t 00409

4

00909 ‘o 000§Y 0coot 000S51

R e e —~

(un z

oLt . S
LA "4




11S00_ SIS9Y L JO JBILD - Uep.or JO ANSIBAIUN JO ARl = oA esay SI0 N .

" SEUIWE] [BUOIIOAPIUN 931Y) JO

apew a1eld ayi jo 1 juiod 1e ¢ (“2) ‘sassans pazijeution "12-$'DI1

ta’a’a

co&ﬁn D

00qoe-

B w..n

(u) z

0
L* "

125



1soce@ssayl Jo

;IUBY - Ueplor JO AISIBAIUN JO AelgiT = PaAesay SIU0 N .

- SjeullIe] [UONOSIPIUN 3211} JO apew jed

SO s pue "p'eT sjutod 36  (“2) ¢ sassans paziRULION ‘77-¢ O[]

00go¥

“o 0000€¢

1

T

00002 00001 nw 0000}~ 00002- 0000¢- oogov-

o0~

1 €00~

1 20°0-

1
1

10°0-

T

T Eﬂu “ “ “

£0°0
(u) 7

o6

126



1IS00e@ SIS|Y L JO BeD - Ueplor Jo AYIseAIUN JO Akeld!T - PaAIRSSY SIYDIY ||V

 SJeUlWE] [BUONDAIIPIUN 9311 JO opew 2)e[d

3 3O § pue y'g'zutod Je * (“2) ‘s3SSNS POZI[BULION "€7-C D]

00¢

POz <o 000§}

T

$o6-
+ €00
| zo0-
T 100

00001 000§ nw 000s- 00001}- Q00§}- 00qoz-

S .w_qlll e e - “ — |o “ “ “

T 100

T €0°0

+ €0°0
) z

60

127



-/
\'/

1sote@ SISay L JO Ba) - ueplof JO AYsiBAIUN JO AkelqiT - PRAISSSY SIYDIY H

' QBUIWIR| [EUOIOANIPIUN 231U} JO apew oje]d

31 JO ¢ pue g sjurod 1e < ( “2) ¢ saSS01)S PAZI[RULION "YZ-S DL

P o-0—

T €0°0-

1+ ¢0°0-

00s¢- 000s- 00s.- 0000}-  009Z!}-

H | L 1
1 T T 1

00§Z} 2 0000} 006L 000§ 00§ (
. — 1 b B S

128



115008 SIS8Y L JO JBe)D - Ueplor JO AJSBAIUN JO AReld!T - poARSSY SIYDIY |1V

- SBULWE] [eUONDAIpIUN a1y} Jo spew syeyd

941 Jo ¢ pue ¢ syurod je ¢ Amv §355a.38 PAZIRULION "$7-$'D]]

#6°0
1 £0°0-
1 20°0-
1 10°0-

00$Z+ “2 0000} 0054 000¢ 0ose Jv 0og2z- C00s- 00§.- 00004-  0092}-

- 0 % w ! “

— - . e ..|i,5* [ \‘.:...._i..llg ——

1

- 10°0

+ ¢0°0

4

- £0'0
(u) 7

129



1soted SIsay L JO B - Ueplof JO AJSIBAAHO-ARICHT - DR A QSO Sl e e ——

‘seunue] A1d-ssois e jo

apew 23e[d ay3 jo i juiod je ‘(") ‘sassans PZI[BUION 97-G"O[.

00009 o 000SY

J.
t ———

00061~ 0000¢- 0005t~ 00409~

() 7
90

130



1s00e Sisay L Jo JBlua) - ueplor JOo A1siBAIUN JO Al T=PoAISSS M- ST e ———

" Sjeurwe] Ajd-ssoId e Jo

apew 93e[d au3 jo 1 jurod e ‘( Wou * $9SS3I)S PIZI[RULION LZ-$'DIg

1 ¢0°0-

100

oowmu ‘0 00002 00051 0000 ] 000§~ 00001~ 0005t~ 00002~ 00qsze-

—— g B Bt ; " “ ;

™
e

T 100

T ¢0°0

T £0°0
(ur) z

0
L A"

131



1IS00e@ SIS|Y L JO BeD - Ueplor Jo AYIseAIUN JO Akeld!T - PaAIRSSY SIYDIY ||V

- djeutwe] 41d-sso1o e jo apew ajerd oy

JOogpue ¢z siutod je ¢ (*2) © s9ss0.1S PAZI[RULION '§7-S'O[

00Q0r o 0000¢ 00002 00001L- 0oo0o0z- 0000¢- 0000t~

00001
fea e mm e _,I‘ — e . + S .

* -

(un) z
00

132



1s00e Sisey JO iU - ueplor Jo A1sieAlun JO AriqiT - paAtessy- SIS - H Y

- ojeutwe] A1d-sso1o e jo spewt syerd
U} Jo ¢ pue y°¢°Z siutod 1e * (“0) ‘sassans pazijeutioN “67-5 Ol

Yol o Y
LA "4

4

- €00~

1 €0°0°

T 10°0-

000s- 00001~ 00051L- Qoqgoe-

| 1 1
T T T

ooﬁow “o 00051 00001

i ..riis.lll!._ e e

1070
1 €0°0
+ £0°0

(un) 7
90

133



1sotedsiseyl JO BIRD - Uepior JOo AJISIBAIUN JO ARt =P AIRSad-SIH e e,

'+ djeulwey £1d-sso1o e Jo opew aje(d

o3 Jo p pue z syutod 3e “ (“2) © sassons P3ZI[BULION "0€-$ DI

0005} “ 00454

134

(un 7
00




1soted Sisay L JO B - Ueplof JO AJSlBAA-O-ARICHT - DR A RSO Sl e —

“djeutwe] A1d-sso1o e jo epew syed

SyiJogpueg mE__oa 1 (“2) “ sassans pazifeulloN ‘1¢-$'0O[]

VJ

1 €0'0-

1 €0°0-

100~

00se- 000§- 006Z- 00001L- 003Z|-

00§21 “2 00001 0052 000§
- | Q- “ “ “ %

— BT . .ml! ——— et i e *ll et LT

135

() 7

0D
L v



5.5.2 Bending Of Clamped-Clamped And Clamped-

Free Beams

Bending stresses in beams made of E glass-epoxy composite
material and subjected to a uniform lateral load with two different

boundary condition are determined and represented in figures. Also,

failure loads at first-ply failure are recorded.

Dimensions of the considered beams are as following :
- Length (I)=10 in.
- Width (b) = 0.5 in.
- Thickness (t) = 0.3in.

- Lamina thickness (t) = 0.1 in.

3.3.2.1 Clamped-Clamped Beam.

Two cases of clamped-clamped beam are considered:

- The beam is made of three unidirectional layers with
angle (6=0").
- The beam is made of cross-ply laminate with

( 0°/90°/0°) stacking sequence.

stresses for the two cases are determined and presented in Fig.5-32
and Fig.5-33, receptively. Failure loads predicted but using the

maximum stress theory of the beam made of a unidirectional
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laminate are given in Table 5 -7 , where first-ply failure will occur at
load g, =-107.111Ib/in atZ=0.15in. inlayer 1 which is under
compression .

For the beam made of a cross-ply laminate , failure loads.are
given in Table 5-8, where first-ply failure occur at load do="43.9
Ib/in at Z=0.05 in the upper part of layer 2 which is under

compression .

As shown in Fig.5-32, and Fig.5-33, the upper part of the

beam is under compression stresses and the lower part is under

tension stresses .

Deflections in the beam made of a unidirectional
laminate 1s shown in Fig. 5-34 and the deflections of the beam made
of cross-ply laminate is shown Fig.5-35 Maximum deflection of the

two cases can be determined by using curves of deflection at the

position of x =L/2.

TABLE 5-7 Failure loads at different // values in a clamped-
clamped beam made of a unidirectional laminate.

Layer Failure Failure
Angle /Z/ (in) Loads q, Location
(Ib/in )

0.01 1606.51

0.03 535.51 Upper part
90° 0.05 321.40 of layer 2
O° 0.09 178.51 Layer 1

0.15 [l07.11]
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TABLE 5-8 Failure loads at different /z/ values in a clamped-

clamped beam made of a cross-ply laminate,

Layer Failure Failure
Angle /Z/ (in) Loads q, Location
(Ib/in )
0.01 2155
0.02 107.7 Upper part
90° 0.04 53.87 of layer 2.
0.05 439 ]
0.05 314.28
0’ 0.07 22448 Layer |
0.09 174.60
0.11 142.85
0.13 120.88
0.15 104.88

5.5.2.2 Clamped-Free Beam

The same beam discussed previously is considered under a
different boundary condition where in this beam the upper part 1s
under tension and the lower part is under compression as shown in
Fig.5-36 and Fig.5-37 for two cases of laminated composite: the

unidirectional laminate and the cross-ply laminate, respectively .

For the beam made of the unidirectional laminate, failure loads
are given in Table 5-9, where first-ply failure occur at load
Qo = -17.86 Ib/in  in layer 3 at Z = 0.15 in which is under

compression .
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For the beam of the cross-ply laminate , failure loads are given
in Table 5-10 and first-ply failure occur at load do = ~7.18 Ib/in

in layer 2 at Z ="0.05 in which is also under compression .

Deflections in the beam made of the unidirectional laminate is
shown in Fig.5-38 and the deflections of the same beam but made of
cross-ply laminate is shown in Fig 5-39. Maximum deflection can be
calculated either by using equations that defined the maximum

deflection or from deflection curves presented in figures .

TABLE 5-9 Failure loads at different /z/ values in a clamped-free
beam made of a unidirectional laminate.

Layer Failure Failure
Angle /Z/ (in) Loads q, Location
(Ib/in)
0.01 267.76 Upper part
90° 0.05 53.56 of layer 2.

0° 0.09 29761 Layer 3

0.15 17.886
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TABLE 5-10 Failure loads at different /z/ values in a clamped-free
beam made of a cross-ply laminate.

Layer Failure Failure '§
Angle /Z/ (in) Loads q, Location o
(Ib/in) @)
0.01 35.96 B
0.02 17.95 Lower part £
90 0.04 8.98 of layer 2. =
0.05 C

O° 0.05 52.42

0.07 37.44 Layer 3

0.09 29.11

0.11 23.81

0.13 20.15

| 0.15 17.46
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CHAPTER SIX

CONCLUSIONS AND RECOMMENDATIONS

6.1 Conclusions

1- Different failure theories can be applied to structures made of
composite materials, and in general their results are in good
agreement with the experimental results.

2- Many composite materials have nonlinear behavior in stress-
strain curves so the failure theory that did not take into
consideration this nonlinearity will not predict the strength
correctly.

3- The failure theory that includes more parameters in the
prediction equation is the theory that can be more accurate in
predication of failure stresses, Thus Tsai-Wu theory can
predict failure stresses better than Tsai-Hill theory.

4- In Tsai-Hill and Tsai-Wu failure theories, considerable
interaction exists between the failure strengths X,Y and S, but
none exists in the maximum stress theory.

5- Angle of rotation is the main factor that can affect the lamina
stiffnesses.

6- For cross-ply laminates, cross-ply ratio and stiffness ratio are
very important in the prediction of failure stresses, for their

effect on extensional stiffnesses, [A].
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7- In general, many structures made of a fibrous composite

material fail under compression stresses rather than tension

stresses.
8- For bending of plates and beams made of fibrous composites,
failure loads in structures made of a unidirectional laminate is

higher than those of the structures made of a cross-ply

laminate.

6.2 Recommendations

I-Micromechanical behavior of fibrous composite material needs
further research, especially on the determination of lamina
properties.

2-More experiments on fibrous composites under different stress

combination are needed.

3- It is important to study the effect of temperature on fibrous
composites.
4- It is recommended to study different failure theories, especially

those that take into consideration the nonlinearity in composite

materials.
5- It is recommended to use finite element approach to predict
failure stresses in structures made of fibrous composites.

6- More research on bending in fibrous composite structures is

needed under different loads and boundary conditions.

7-Buckling failure in composite structures needs to be studied at

different loading and boundary conditions.
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Appendix A

TYPICAL MECHANICAL PROPERTIES OF SOME
COMPOSITES

Typical mechanical properties of some composttes are

adapted from Jones (1975), and Vinson and Sicrakowski (1986),
and given in Table A-1.
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FIG. B-2. Compressive o, - ¢, curve for 3M XP2518S glass-epoxy.
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FIG. B-3. Tensile o, -¢, curve for 3M XP251S glass-epoxy.
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FIG. B-5. Shear stress- strain curve for 3M XP251S glass-epoxy.
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FIG. B-6. Tensile o, -¢, curve for boron- epoxy Narmco 5505.
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FIG. B-7. Compressive o, - ¢ curve for boron- epoxy Narmco 5505.
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FIG. B-8. Tensile o,-¢, curve for boron- epoxy Narmco 5505.
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FIG. B-9. Compressiveo, - &, curve for boron-epoxy Narmco 5505.
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